extension | φ:Q→Aut N | d | ρ | Label | ID |
(C7×C14).1C22 = D7×Dic7 | φ: C22/C1 → C22 ⊆ Aut C7×C14 | 56 | 4- | (C7xC14).1C2^2 | 392,18 |
(C7×C14).2C22 = Dic7⋊2D7 | φ: C22/C1 → C22 ⊆ Aut C7×C14 | 28 | 4+ | (C7xC14).2C2^2 | 392,19 |
(C7×C14).3C22 = C72⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C7×C14 | 56 | 4- | (C7xC14).3C2^2 | 392,20 |
(C7×C14).4C22 = C7⋊D28 | φ: C22/C1 → C22 ⊆ Aut C7×C14 | 28 | 4+ | (C7xC14).4C2^2 | 392,21 |
(C7×C14).5C22 = C72⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C7×C14 | 56 | 4- | (C7xC14).5C2^2 | 392,22 |
(C7×C14).6C22 = C7×Dic14 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 56 | 2 | (C7xC14).6C2^2 | 392,23 |
(C7×C14).7C22 = D7×C28 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 56 | 2 | (C7xC14).7C2^2 | 392,24 |
(C7×C14).8C22 = C7×D28 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 56 | 2 | (C7xC14).8C2^2 | 392,25 |
(C7×C14).9C22 = C14×Dic7 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 56 | | (C7xC14).9C2^2 | 392,26 |
(C7×C14).10C22 = C7×C7⋊D4 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 28 | 2 | (C7xC14).10C2^2 | 392,27 |
(C7×C14).11C22 = C72⋊4Q8 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 392 | | (C7xC14).11C2^2 | 392,28 |
(C7×C14).12C22 = C4×C7⋊D7 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 196 | | (C7xC14).12C2^2 | 392,29 |
(C7×C14).13C22 = C28⋊D7 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 196 | | (C7xC14).13C2^2 | 392,30 |
(C7×C14).14C22 = C2×C7⋊Dic7 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 392 | | (C7xC14).14C2^2 | 392,31 |
(C7×C14).15C22 = C72⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C7×C14 | 196 | | (C7xC14).15C2^2 | 392,32 |
(C7×C14).16C22 = D4×C72 | central extension (φ=1) | 196 | | (C7xC14).16C2^2 | 392,34 |
(C7×C14).17C22 = Q8×C72 | central extension (φ=1) | 392 | | (C7xC14).17C2^2 | 392,35 |